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Orbitals that minimize the variance 
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A MCSCF-method for minimization of the variance yielding an optimal 
basisset of variance minimizing orbitals in analogy to Lrwdin's  natural orbitals 
for minimal energy is developed. 
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1. Introduction 

Minimizing the Rayleigh quotient 

(~I HXI0 
R[q']  - - - > E o  (1) 

an upper bound Er = (g r  I Hq'r) ,  IlqYr II = I to the groundstate energy Eo is obtained. 
Minimization of 

(St I ( n  - A)2q') 
R[A, 93 : <,I , l*> - v_> Vo (2) 

leads to a minimal variance V, an optimal function ~ and a real number ~ with 

~ = <~t I H~t>--> Eo, Ilqtll = 1 (3) 

(see [1, 2]). Then, the lower bound /~t = ~-x/17"_< Eo is much better than Et = 

Ar--V/--~ -</~,--< Eo with Vr = R[Ar, ~r]- This is true for an extended basis as for 
small basis much more. In [3] the analogon was stated using Temple's formula. 

Considering the original eigenvalue problem H ~ -  E ~  = 0 with ~ ~ D n  c L 2 

(DH domain of H, I1'I'1[ = 1), one has to keep in mind that the minimization of 
II n~-E't'II and not of (H't 'I 'I ')  is the adequate problem estimating accurate 
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energies and wavefunctions in a finite dimensional vectorspace. Therefore, there 
are good reasons for the calculation of orbitals that minimize the variance (VMOs) 
instead of  the energy. 

For the three-body system we were successfully using an ansatz with correlated 
wavefunctions dependent on distance coordinates [6, 7] but for the general many 
body problem this ansatz is unsuitable. Therefore, the following question arises: 
what is the situation like using the orbital picture? Avoiding an "explosion" of 
the basis dimension and the diagonalisation of  almost singular matrices we took 
advantage of  the MCSCF-method, which is successful in'the calculation of  upper 
bounds. Here, a CI-ansatz of  the form 

K 
= Z clqbI (4) 

I 

is used with the qb~ being Slater-determinants built up by the orbitals ~b~. 

It is possible to determine suitable VMOs if the following three problems can be 
solved, (i) the transfer of  the MCSCF-method to the minimization of V, (ii) the 
obtained calculus leads to a convergent procedure, (iii) sufficient small values 
for the variance can be obtained. It is shown that the answer to (i) and (ii) is 
positive, but the problem (iii) cannot be solved without highspeed super- 
computers. 

2. Spinorbital expansion of the variance 

Using the Born-Oppenheimer approximation, the atomic hamiltonian H of  a 
system with n electrons and the nuclear charge Z is given by 

--i H h~ + / .  gu (5) 
i i <j  

with 

z 
hi = - - - ,  (6) 

2 ' ri 

1 
g0 = --" (7) 

r~ 

Actually, the derivation uses the symmetry go = gJ~ only. 

Expressing the Variance V in a spinorbital-basis {~0i}, first of all the operator 

F 2 = ( H  - - A )  2 =  H 2 - 2 A H +  A 2 ( 8 )  

has to be written as a sum of  one-, two-, three-, and fourelectron operators. Using 
(5), relation (8) leads to 

i,j i < j  k i < j  k < l  i i< j  
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resulting in 

i i.<j i,<j k r  i< j  k < l ( k , l ~ i , j )  

after rearrangement. Thereby, the following abbreviations are used: 

a,(A) = h , ( h , - 2 A ) ,  (11) 

bo( A ) = 2hihj + (hi + h j )g  0 + g~(hi + hi) + g2 _ 2Ag0, (12) 

Cij, k = 2gohk + go(gig + g~k), (13) 

di~,kl = gogkt. (14) 

Furthermore, L/Swdin's [8] generalized spindensity matrices (SDM) of the order 
k with McWeeny's [9] normalization are introduced: 

r ~ ) ( ~ ,  �9 �9 � 9  ~ ' ~ ,  ~ ' ~ ,  �9 �9 � 9  ~ 'k ) ,  

k !  qt*(T~,..., ' r~ ,  "/'k+l, �9 �9 �9 , Tn)~'t( 'F1, - . .  , Tn) d ' r k + l "  . . .  " d r , .  

The SDM can be expanded in a m-dimensional, orthonormal spinorbital-basis 
{~bi}, as shown for the case of second order: 

F(2)(~-~-~, T1 "/'2) 
1 ~ )  * ' * ' 

- _ Fpq,,u@p(rl)@q(ZE)qJt(rl)~b~(r2) (16) 
p,t q,u 

(2) with the Fpq.t~ standing for the elements of the SDM in this basis. The evaluation 
of the SDM elements up to the order four can be done with the expressions 
based on the creation- and annihilation-operators as given, e.g. by H.-J. Werner 
and W. Meyer [10, Appendix C]. 

Using the SDM-elements of order one to four and the relation (10), the variance 
can be written as 

l p, t xp  F pq, tu( p q  l b12tu } 
p,t p,t q,u 

F pqr, tuv(pqrl c12,3 tu/)) 
p,t q.u r,v 

. ~ . 1 ~  ~ ~, ~. (4) 
F pqrs, tuvw(pqrs l d12,34tuvw) 

p,t q,u r,v s,w 

which is comprehensed to 

V=A2q-~. ~ ~ ~,, ( p q r s l G t u v w )  
p,t q,u r,v s,w 

with 

p( l )  ]-,(2) (3) (4) 
G = G p q  . . . . . .  = ~ al + ~ b12 d- F p q r ' m v  c12 3 "~ Fpqrs ' tuvw d12 34. 

" m e 2m ~ 2m " 4 " 

(17) 

(18) 

(19) 
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In order to achieve (19), the orthonormality of the spinorbitals ~0~, represented 
by their indices, was used. Furthermore, we took advantage of the fact that all 
the operators a~ (i = 2 , . . . ,  n), e.g., give the same contribution as a I (bi j ,  CU, k, and 
dij, kt analogously). 

Due to the conventions (15) and (4) made above, the SDM like their elements 
are dependent on the coefficients cI: 

K 

F (k)= ~. cIc~IJF (k) (20) 
i , I  

with 

(21) 

Obviously, (19) can be written as 

K 

O = Y. cio IJG (22) 
LJ  

yielding for the variance: 

1,J p , t  q ,u  r,v s , w  I , J  
(23) 

3. The MCSCF-equations 

Varying the cl-coefficients as well as the spinorbital basis {q'i}, the method of 
orbital rotation, known from the MCSCF procedures [11-13], can be used. 
According to this method, a unitary matrix U is determined with 

= UTO. (24) 

U transforms the given m-dimensional, orthonormal basisset {#~} into the tri- 
dimensional ( m - r ~ )  set of the VMO. Inserting (24) into (23), the MCSCF 
minimization of the variance leads to a set of stationary conditions for the cx and 
the U~ (27, 28), which have to be solved under the following constraints: 

Z ~ - ( U T U ) u - 8 , j = O  ( i , j =  1 , . . . ,  th), (25) 

K 

T-Y~ c ~ - I  =0,  (26) 
I 

taken into account by the Lagrangian multipliers A~j ( i , j  = 1 , . . . ,  rh) and ~7: 

[ -  ] 0 v-E ,~u{(uTu)o-8~} =2A~-2(UA)~---0, 
OU.~ (27) I.. i , j  

(/.L = 1 , . . . ,  m; v=  1 , . . . ,  r~), 
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0 V-rl  c2-1 =2Y~c,("G)-2nc, ==-0 (/z = 1 , . . . ,  K).  (28) 
I 

A is the symmetric matrix of the A 0 and A.~ is given by: 

1 0 V  
A l ~  ~ - -  

2 oU~ 

K rh 

= ~ CiCj " ~ ( ( t ~ p ~ , ] . l ~ q ~ - - ~ t ~ q v P l ~ f f - [ - ~ r v p q ~ s " ~ s v p q ~ ) l I J G ~ u ~ w ) .  ( 2 9 )  
l ,J p,..., w 

In order to eliminate the unknown A0, (27) is written as a matrix equation: 

A -  UA = 0. (30) 

This leads to 

B - A -  UArU=-O (31) 

equivalent to 

B,~-A~-(UATU),~=-O ( / z = l , . . . , m ;  v=  1 , . . . ,  r~). (32) 

As follows from the constraints (25, 26), just r~. m -  (rfi/2)(rfi + 1) elements U 0 
and K -  1 coefficients ci are independent between -1-< U0, ci-< 1. Therefore, 
the variation of V yields only a corresponding number of independent equations 
instead of the K + rfi- m (28, 32). The missing relations are given by the constraints 
(25, 26). Substitution of the redundant equations in (28, 32) results in the following 
nonlinear system in the unknown U o. and ci: 

B~=A~-(UArU)~v=O ( /z=  v + l , . . . , m ;  v=  1 , . . . ,  n~), (33) 

Z~v=(UrU)~,-~,~=O (~  = 1 , . . . ,  v; v=  1 , . . . ,  r~), (34) 

K 

Y~ =Y. cI(1~G)-~c~ =0 (/z = 1 , . . . ,  K -1 ) ,  (35) 
I 

K 

T = ~  c ~ - i  =0. (36) 
I 

The Lagrangian multiplier ~7 is given by 

~7 = V-A2 (37) 

obtained from (35) using (26) and (23). The iterative solution of the nonlinear 
equations (33 . . .  36) is accomplished using the Newton-Raphson method with 
a special damping scheme, which guaranteed quadratic convergence [14]. Thus 
problem (ii) was solved. 
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4. Calculations 

The method described above was tested for the simple case of the  helium atom. 
Here, the spinfree wavefunction qt for the singlet-state can be written 

K 

,I,(1, 2) = E d, xx(1)x,(2) (38) 
I 

with the NOs XI from L6wdin [15, 16]. The application of the ansatz (38) leads 
to numerous simplifications for the variance and the equations derived above 
[14]. The MCSCF minimization of  the variance starts with the coefficients dl and 
NO X~, which are estimated for minimum energy by the method of  Ahlrichs and 
Driessler [17]. Our intention was to develop an expression for the wavefunction 
in analogy to (38), with the VMO 5~ and the corresponding d~ for minimum 
variance, e.g. 

K 

~(1,  2) = E d~)~, (1)5~, (2). (39) 
i 

The calculations were performed for two different cases: (a) t h e  radial limit 
case with H = h l + h 2 + ( 1 / r > ) ,  (b) the groundstate for the He-atom with H =  
h 1 +  h 2 +  1 / r 1 2 .  

Case (a) gives an example of a CI-expansion of  excellent convergence. Here, the 
minimization of  the variance was performed in the Hilbert space spanned by the 
radial functions ~( r ) .  Using a sixteen-dimensional AO-basis 

qb = r n-1 e -~r (n = 1 , . . . ,  16) (40) 

leads to the energy and variance values presented in Table 1. Here, K VMOs are 
generated from the first 12 NOs. The va lue /~ (K = 8) is in good agreement with 
the energy -2.8790286 a.u. given by Silverstone et al. [18], but the variance, 
however, is not very small (a value of ca. 10 -8 a.u. might be called "very small"). 

In contrast to the radial limit, the CI-expansion of the helium ground-state 
is slowly convergent. For the calculations in case (b) the real STO-basis 
dl)n,l, rn = r n-1 e-'~rP~ ml (cos O ) Tm(~o) with Tm(~p) = sin (Iml~p)(m <0)  or Tm(~) = 
cos(Iml~o)(m>-0) and n = l , 2 , . . . ;  l = 0 , 1 , . . . , n ;  m = - l , . . . , l ;  ce=2.59 was 

Table 1. E n e r g y  a n d  v a r i a n c e  va lues  in the  r ad ia l - l imi t  case  in a .u.  

K - ~  V~ -~~ f'~ 

2 2 .877925 2 .731E - 2 2 .877464 2 .247E - 2 
4 2 .878980 4 . 8 8 3 E -  3 2 .878929 2 .885E - 3 

6 2.879021 1 . 6 2 6 E -  3 2 .879012 8 .227E - 4 

8 2 .879026 7 . 4 1 3 E -  4 2 .879024 5 .982E - 4 

E n e r g y  va lues  o b t a i n e d  b y  the  Ritz  m i n i m i z a t i o n  

b V a r i a n c e  va lues  c a l c u l a t e d  f r o m  w a v e f u n c t i o n s  o b t a i n e d  b y  the  Ritz min imiz -  

a t i o n  
r E n e r g y  va lues  c a l c u l a t e d  f r o m  w a v e f u n c t i o n s  o b t a i n e d  b y  the  v a r i a n c e  min imiz -  
a t i o n  
d V a r i a n c e  va lues  o b t a i n e d  b y  the  v a r i a n c e  m i n i m i z a t i o n  
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Table 2. Energy and variance values for the He groundstate in a.u. 
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K - E ~  V~ - / ~  17"d 

2 2.877505 4.511E- 1 2.824531 3.645E- 1 
4 2.890651 3.360E- 1 2.864241 2.750E- 1 
6 2.897797 2.620E- 1 2.880824 2.150E- 1 
8 2.898891 2.361E- 1 2.884663 1.959E- 1 

a-d See Table 1 

used, including the sixteen orbitals ls, 2s, 2p, 3s, 3p, 3d, 4s, 5s. The results of  the 
MCSCF minimization of  the variance - obtained with the corresponding sixteen- 
dimensional NO-basis - are listed in Table 2. The integrals needed for this 
calculation are well known except those containing lira2, which are given in 
[19-21]. 

5. Discussion 

In the present paper  it is shown that the formalism of MCSCF can be adapted 
to the minimization of the variance. Furthermore, the procedure developed is of  
quadratic convergence. 

Remark. The convergence is a crucial point, because, e.g. the extension of the 
fast and elegant procedure of  Ahlrichs and Driessler [17] to our problem failed. 
No convergence could be achieved for VMOs. 

However, the main problem of the method derived is the computational effort, 
which turned out to be immense. Rapid increasing CPU-times prevent an 
extension to basis sets much greater than used in our calculations on a Siemens 
7580 S. Therefore, an application of the method to more complicated systems 
yielding small variances seems not to be practicable. Such calculations may be 
possible on a supercomputer,  but for our opinion an analogous calculus based 
on correlated wavefunctions will be more advantageous. 

Recently, Kutzelnigg [4] calculated a good upper  bound Er = -2.9037240 a.u. for 
the groundstate energy Eo of the He-atom with correlated wavefunctions using 
a relative small basis (ca. 80 configurations). This leads to a much better variance 
value of Vr-~ 10 -4 [5]. 
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